Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a1, a2, a3, ldots a49, a50, are in arithmetic progression. If a 1=4 and a 50=144, then the value of (1/√a1+√a2)+(1/√a2+√a3)+(1/√a3+√a4) ldots .+(1/√ a 49+√ a 50) is equal to
Q. Let
a
1
,
a
2
,
a
3
,
…
a
49
,
a
50
, are in arithmetic progression. If
a
1
=
4
and
a
50
=
144
, then the value of
a
1
+
a
2
1
+
a
2
+
a
3
1
+
a
3
+
a
4
1
…
.
+
a
49
+
a
50
1
is equal to
1703
201
Sequences and Series
Report Error
A
13
14
B
14
49
C
13
50
D
17
48
Solution:
Expression
=
d
[
(
a
2
−
a
1
)
+
(
a
3
−
a
2
)
+
…
.
+
(
a
50
−
a
49
)
]
where
d
=
common difference of
A
.
P
.
=
d
a
50
−
a
1
=
(
49
140
)
144
−
4
=
14
49