Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $a_{1}, a_{2}, a_{3}, \ldots a_{49}, a_{50}$, are in arithmetic progression. If $a _{1}=4$ and $a _{50}=144$, then the value of
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\frac{1}{\sqrt{a_{3}}+\sqrt{a_{4}}} \ldots .+\frac{1}{\sqrt{ a _{49}}+\sqrt{ a _{50}}}$ is equal to

Sequences and Series

Solution:

Expression
$= \frac{\left[\left(\sqrt{a_{2}}-\sqrt{a_{1}}\right)+\left(\sqrt{a_{3}}-\sqrt{a_{2}}\right)+\ldots .+\left(\sqrt{a_{50}}-\sqrt{a_{49}}\right)\right]}{d}$
where $d =$ common difference of $A.P.$
$=\frac{\sqrt{ a _{50}}-\sqrt{ a _{1}}}{ d }=\frac{\sqrt{144}-\sqrt{4}}{\left(\frac{140}{49}\right)}=\frac{49}{14}$