Q.
Let a1,a2,a3,…,a11 be real numbers satisfying a1=15,27−2a2>0 and ak=2ak−1−ak−2 for k=3,4,…,
11. If 11a12+a22+…+a112=90, then the value of 11a1+a2+…+a11 is equal to _____
ak=2ak−1−ak−2⇒a1,a2,…,a11 are in A.P. ∴11a12+a22+…+a112=1111a2+35×11d2+10ad=90 ⇒225+35d2+150d=90 35d2+150d+135=0 ⇒d=−3,−9/7
Given a2<227 ∴d=−3 and d=−9/7 ⇒11a1+a2+…+a11 =211[30−10×3]=0.