Q. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{11}$ be real numbers satisfying $a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2}$ for $k=3,4, \ldots$, 11. If $\frac{a_{1}^{2}+a_{2}^{2}+\ldots+a_{11}^{2}}{11}=90$, then the value of $\frac{a_{1}+a_{2}+\ldots+a_{11}}{11}$ is equal to _____
JEE AdvancedJEE Advanced 2010
Solution: