Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[(1/6) (-1/3) (-1/6) (-1/3) (2/3) (1/3) (-1/6) (1/3) (1/6)] . If A2016 l+A2017 m+A2018 n=(1/α) A, for every l, m, n ∈ N, then the value of α is
Q. Let
A
=
⎣
⎡
6
1
3
−
1
6
−
1
3
−
1
3
2
3
1
6
−
1
3
1
6
1
⎦
⎤
.
If
A
2016
l
+
A
2017
m
+
A
2018
n
=
α
1
A
, for every
l,
m
,
n
∈
N
, then the value of
α
is
1583
207
TS EAMCET 2018
Report Error
A
6
1
B
3
1
C
2
1
D
3
2
Solution:
∵
A
=
⎣
⎡
6
1
−
3
1
−
6
1
−
3
1
3
2
3
1
−
6
1
3
1
6
1
⎦
⎤
=
6
⎣
⎡
1
−
2
−
1
−
2
4
2
−
1
2
1
⎦
⎤
A
p
=
A
, for every
p
∈
N
So,
A
2016
l
=
A
2017
m
=
A
2018
n
=
A
, for every
l
,
m
,
n
∈
N
So,
A
2016
l
+
A
2017
m
+
A
2018
n
=
3
A
=
α
1
A
(given)
⇒
α
=
3
1