Q.
Let $A=\begin{bmatrix}\frac{1}{6} & \frac{-1}{3} & \frac{-1}{6} \\ \frac{-1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{-1}{6} & \frac{1}{3} & \frac{1}{6}\end{bmatrix} .$ If
$A^{2016 l}+A^{2017 m}+A^{2018 n}=\frac{1}{\alpha} A$, for every
l, $m, n \in N$, then the value of $\alpha$ is
TS EAMCET 2018
Solution: