Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[ -1 2 -3 -2 0 3 3 -3 1 ] be a matrix, then |A|adj (A- 1) is equal to
Q. Let
A
=
⎣
⎡
−
1
−
2
3
2
0
−
3
−
3
3
1
⎦
⎤
be a matrix, then
∣
A
∣
a
d
j
(
A
−
1
)
is equal to
2272
191
NTA Abhyas
NTA Abhyas 2020
Matrices
Report Error
A
O
3
×
3
B
⎣
⎡
−
1
−
2
3
2
0
−
3
−
3
3
1
⎦
⎤
C
I
3
D
⎣
⎡
−
3
−
1
−
3
nb
s
p
nb
s
p
nb
s
p
nb
s
p
nb
s
p
3
nb
s
p
nb
s
p
nb
s
p
2
nb
s
p
1
nb
s
p
−
3
nb
s
p
nb
s
p
0
−
2
⎦
⎤
Solution:
We know that,
A
−
1
a
d
j
(
A
−
1
)
=
∣
∣
A
−
1
∣
∣
I
3
⇒
A
.
A
−
1
a
d
j
(
A
−
1
)
=
∣
∣
A
−
1
∣
∣
(
A
I
)
3
⇒
a
d
j
(
A
−
1
)
=
∣
∣
A
−
1
∣
∣
A
⇒
∣
A
∣
a
d
j
(
A
−
1
)
=
A