Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A=\begin{bmatrix} -1 & \, \, \, 2 & -3 \\ -2 & \, \, \, 0 & \, \, \, 3 \\ \, \, \, 3 & -3 & \, \, \, 1 \end{bmatrix}$ be a matrix, then $\left|A\right|adj \, \left(A^{- 1}\right)$ is equal to

NTA AbhyasNTA Abhyas 2020Matrices

Solution:

We know that,
$A^{- 1}adj \, \left(A^{- 1}\right)= \, \left|A^{- 1}\right|I_{3}$
$\Rightarrow A. \, A^{- 1}adj \, \left(A^{- 1}\right)= \, \left|A^{- 1}\right|\left(A I\right)_{3}$
$\Rightarrow \, adj \, \left(A^{- 1}\right)= \, \left|A^{- 1}\right|A$
$\Rightarrow \, \left|A\right|adj \, \left(A^{- 1}\right)= \, A$