Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[ 1 (-1-i √3/2) (-1+i √3/2) 1] . Then, A100 is equal to
Q. Let
A
=
[
1
2
−
1
+
i
3
2
−
1
−
i
3
1
]
. Then,
A
100
is equal to
2283
226
KEAM
KEAM 2016
Report Error
A
2
100
B
2
99
A
C
2
98
A
D
A
E
A
2
Solution:
A
=
[
1
2
−
1
+
i
3
2
−
1
−
i
3
1
]
Let
2
−
1
+
i
3
=
ω
⇒
ω
2
=
(
2
)
2
(
−
1
+
i
3
)
2
=
4
1
−
2
i
3
−
3
=
4
−
2
−
2
i
3
=
2
−
1
−
i
3
∴
A
=
[
1
ω
ω
2
1
]
⇒
A
2
=
[
1
ω
ω
2
1
]
[
1
ω
ω
2
1
]
=
[
1
+
ω
3
ω
+
ω
ω
2
+
ω
2
ω
3
+
1
]
=
[
2
2
ω
2
ω
2
2
]
[
∵
ω
3
=
1
]
=
2
[
1
ω
ω
2
1
]
=
2
A
⇒
A
3
=
A
2
⋅
A
=
2
A
⋅
A
=
2
A
2
=
4
A
⇒
A
n
=
2
n
−
1
A
⇒
A
100
=
2
100
−
1
A
=
2
99
A