Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A=\begin{bmatrix} 1 & \frac{-1-i \sqrt{3}}{2} \\ \frac{-1+i \sqrt{3}}{2} & 1\end{bmatrix} $. Then, $A^{100}$ is equal to

KEAMKEAM 2016

Solution:

$A=\begin{bmatrix}1 & \frac{-1-i \sqrt{3}}{2} \\ \frac{-1+i \sqrt{3}}{2} & 1\end{bmatrix}$
Let $\frac{-1+i \sqrt{3}}{2}=\omega$
$\Rightarrow \omega^{2}=\frac{(-1+i \sqrt{3})^{2}}{(2)^{2}}=\frac{1-2 i \sqrt{3}-3}{4}$
$=\frac{-2-2 i \sqrt{3}}{4}=\frac{-1-i \sqrt{3}}{2}$
$\therefore A=\begin{bmatrix}1 & \omega^{2} \\ \omega & 1\end{bmatrix}$
$\Rightarrow A^{2}=\begin{bmatrix}1 & \omega^{2} \\ \omega & 1\end{bmatrix} \begin{bmatrix} 1 & \omega^{2} \\ \omega & 1\end{bmatrix} = \begin{bmatrix} 1+\omega^{3} & \omega^{2}+\omega^{2} \\ \omega+\omega & \omega^{3}+1\end{bmatrix}$
$= \begin{bmatrix} 2 & 2 \omega^{2} \\ 2 \omega & 2\end{bmatrix} [\because \omega^{3}=1]$
$=2 \begin{bmatrix} 1 & \omega^{2} \\ \omega & 1\end{bmatrix} =2 A$
$\Rightarrow A^{3}=A^{2} \cdot A=2 A \cdot A=2 A^{2}=4 A$
$\Rightarrow A^{n}=2^{n-1} A$
$\Rightarrow A^{100}=2^{100-1} A=2^{99} A$