Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A = beginpmatrix1&0&0 2&1&0 3&2&1 endpmatrix If u1 and u2 are column matrices such that Au1 = beginpmatrix1 0 0 endpmatrix and Au2 = beginpmatrix0 1 0 endpmatrix, then u1 + u2 is equal to :
Q. Let
A
=
⎝
⎛
1
2
3
0
1
2
0
0
1
⎠
⎞
If
u
1
and
u
2
are column matrices such that
A
u
1
=
⎝
⎛
1
0
0
⎠
⎞
and
A
u
2
=
⎝
⎛
0
1
0
⎠
⎞
,
then
u
1
+
u
2
is equal to :
1615
204
AIEEE
AIEEE 2012
Matrices
Report Error
A
⎝
⎛
−
1
1
0
⎠
⎞
12%
B
⎝
⎛
−
1
1
−
1
⎠
⎞
9%
C
⎝
⎛
−
1
−
1
0
⎠
⎞
14%
D
⎝
⎛
1
−
1
−
1
⎠
⎞
65%
Solution:
A
(
u
1
+
u
2
)
=
⎝
⎛
1
1
0
⎠
⎞
∣
A
∣
=
1
A
−
1
=
∣
A
∣
1
a
d
j
A
u
1
+
u
2
=
A
−
1
⎣
⎡
1
1
0
⎦
⎤
A
−
1
=
⎣
⎡
1
−
2
1
0
1
−
2
0
0
1
⎦
⎤
=
⎣
⎡
1
−
1
−
1
⎦
⎤