Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A = \begin{pmatrix}1&0&0\\ 2&1&0\\ 3&2&1\end{pmatrix}$ If $u_1$ and $u_2$ are column matrices such that $Au_{1} = \begin{pmatrix}1\\ 0\\ 0\end{pmatrix}$ and $ Au_{2} = \begin{pmatrix}0\\ 1\\ 0\end{pmatrix},$ then $ u_{1} + u_{2} $ is equal to :

AIEEEAIEEE 2012Matrices

Solution:

$A\left(u_{1}+u_{2}\right) = \begin{pmatrix}1\\ 1\\ 0\end{pmatrix}\quad\quad|A| = 1$
$A^{-1} = \frac{1}{\left|A\right|}adj A $
$u_{1} + u_{2} = A^{-1} \begin{bmatrix}1\\ 1\\ 0\end{bmatrix}\quad\quad A^{-1} = \begin{bmatrix}1&0&0\\ -2&1&0\\ 1&-2&1\end{bmatrix} = \begin{bmatrix}1\\ -1\\ -1\end{bmatrix}$