Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let (1/x1) , (1/x2) ,...., (1/xn) (x1 ≠ 0 for i = 1 , 2 , ... , n) be in A.P. such that x1 = 4 and x21 = 20. If n is the least positive integer for which xn > 50, then displaystyle∑ni = 1 ( (1/xi)) is equal to
Q. Let
x
1
1
,
x
2
1
,
....
,
x
n
1
(
x
1
=
0
for
i
=
1
,
2
,
...
,
n
)
be in A.P. such that
x
1
=
4
and
x
21
=
20
. If n is the least positive integer for which
x
n
>
50
, then
i
=
1
∑
n
(
x
i
1
)
is equal to
3636
190
JEE Main
JEE Main 2018
Sequences and Series
Report Error
A
8
1
11%
B
3
7%
C
8
13
35%
D
4
13
47%
Solution:
Given:
A
P
:
x
1
1
,
x
2
1
,
…
x
n
1
And
x
1
=
4
,
x
21
=
20
So,
4
1
+
20
d
=
20
1
20
d
=
20
1
−
4
1
=
20
1
−
5
⇒
20
d
=
20
−
4
⇒
d
=
20
×
2
−
4
⇒
d
=
100
−
1
Now,
x
n
1
<
50
1
4
1
−
100
n
−
1
<
50
1
⇒
n
>
24
n
=
25
Therefore,
i
=
1
∑
25
(
x
i
1
)
=
2
25
(
2
×
4
1
−
100
1
×
24
)
=
4
13