Q. Let $\frac{1}{x_1} , \frac{1}{x^2} ,...., \frac{1}{x_n} (x_1 \neq 0$ for $i = 1 , 2 , ... , n)$ be in A.P. such that $x_1 = 4$ and $x_{21} = 20$. If n is the least positive integer for which $x_n > 50$, then $\displaystyle\sum^n_{i = 1} \left( \frac{1}{x_i}\right)$ is equal to
Solution: