Q.
Let 1+r=1∑10(3r⋅10Cr+r⋅10Cr)=210(α⋅45+β) where α,β∈N and f(x)=x2−2x−k2+1.
If α,β lies between the roots of f(x)=0, then find the smallest positive integral value of k.
We have 1+∑r=110(3r⋅10Cr+r⋅10Cr)=1+∑r=1103r⋅10Cr+10∑r=1109Cr−1=1+410−1+10⋅29 =410+5.210=210(45+5)=210(α⋅45+β), so α=1 and β=5 Now f(1)<0 and f(5)<0
So f(1)<0⇒−k2<0⇒k=0
and f(5)<0⇒16−k2<0⇒k2−16>0⇒k∈(−∞,4)∪(4,∞)
Hence smallest positive integral value of k=5