Q. Let $1+\displaystyle\sum_{ r =1}^{10}\left(3^{ r } \cdot{ }^{10} C _{ r }+ r \cdot{ }^{10} C _{ r }\right)=2^{10}\left(\alpha \cdot 4^5+\beta\right)$ where $\alpha, \beta \in N$ and $f ( x )= x ^2-2 x - k ^2+1$. If $\alpha, \beta$ lies between the roots of $f ( x )=0$, then find the smallest positive integral value of $k$.
Binomial Theorem
Solution: