Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let 0<α<β<1. Then lim limits n arrow ∞ displaystyle∑k=1n ∫ limits(1/(k+β))(1/(k+α)) (d x/1+x) is
Q. Let
0
<
α
<
β
<
1
. Then
n
→
∞
lim
k
=
1
∑
n
(
k
+
β
)
1
∫
(
k
+
α
)
1
1
+
x
d
x
is
1723
185
WBJEE
WBJEE 2020
Report Error
A
lo
g
e
α
β
B
lo
g
1
+
α
1
+
β
C
lo
g
e
1
+
β
1
+
α
D
∞
Solution:
n
→
∞
lim
k
=
1
∑
n
[
lo
g
∣1
+
x
∣
]
1/
k
+
β
1/
k
+
α
=
n
→
∞
lim
k
=
1
∑
n
(
lo
g
(
1
+
k
+
α
1
)
−
lo
g
(
1
+
k
+
β
1
)
)
=
n
→
∞
lim
k
=
1
∑
n
(
lo
g
(
k
+
α
k
+
α
+
1
)
−
lo
g
(
k
+
β
k
+
β
+
1
)
)
=
lo
g
(
α
+
1
β
+
1
)