Q. Let $0<\alpha<\beta<1$. Then $\lim\limits _{n \rightarrow \infty} \displaystyle\sum_{k=1}^{n} \int\limits_{\frac{1}{\left(k+\beta\right)}}^{\frac{1}{\left(k+\alpha\right)}} \frac{d x}{1+x}$ is
WBJEEWBJEE 2020
Solution: