Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫( log (x+√1+x2)/√1+x2)dx is equal to
Q.
∫
1
+
x
2
l
o
g
(
x
+
1
+
x
2
)
d
x
is equal to
11476
224
KEAM
KEAM 2010
Integrals
Report Error
A
[
lo
g
(
x
+
1
+
x
2
)]
2
+
c
B
x
lo
g
(
x
+
1
+
x
2
)
+
c
C
2
1
lo
g
(
x
+
1
+
x
2
)
+
c
D
2
1
[
lo
g
(
x
+
1
+
x
2
)]
2
+
c
E
2
x
lo
g
(
x
+
1
+
x
2
)
+
c
Solution:
Let
I
=
∫
1
+
x
2
l
o
g
(
x
+
1
+
x
2
)
d
x
Put
t
=
lo
g
(
x
+
1
+
x
2
)
d
x
d
t
=
x
+
1
+
x
2
1
{
1
+
1
+
x
2
x
}
=
(
x
+
1
+
x
2
)
.
1
+
x
2
x
+
1
+
x
2
=
1
+
x
2
1
∴
1
+
x
2
d
x
=
d
t
∴
I
=
∫
t
d
t
=
2
t
2
+
c
=
2
1
[
lo
g
(
x
+
1
+
x
2
)]
2
+
c