Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{\frac{\log (x+\sqrt{1+{{x}^{2}}})}{\sqrt{1+{{x}^{2}}}}}dx $ is equal to

KEAMKEAM 2010Integrals

Solution:

Let $ I=\int{\frac{\log (x+\sqrt{1+{{x}^{2}}})}{\sqrt{1+{{x}^{2}}}}}dx $
Put $ t=\log (x+\sqrt{1+{{x}^{2}}}) $ $ \frac{dt}{dx}=\frac{1}{x+\sqrt{1+{{x}^{2}}}}\left\{ 1+\frac{x}{\sqrt{1+{{x}^{2}}}} \right\} $
$=\frac{x+\sqrt{1+{{x}^{2}}}}{(x+\sqrt{1+{{x}^{2}}}).\sqrt{1+{{x}^{2}}}} $
$=\frac{1}{\sqrt{1+{{x}^{2}}}} $
$ \therefore $ $ \frac{dx}{\sqrt{1+{{x}^{2}}}}=dt $
$ \therefore $ $ I=\int{t}\,dt=\frac{{{t}^{2}}}{2}+c $
$=\frac{1}{2}{{[\log (x+\sqrt{1+{{x}^{2}}})]}^{2}}+c $