PLAN Integration by Substitution i.e.I=∫f{g(x)}..g1(x)dx putg(x)=t⇒g1(x)dx=dt ∴I=∫f(t)dt
Description of Situation Generally, students gets
confused after substitution, i.e. secx+tanx=t.
Now, for secx, we should use sec2x−tan2x=1 ⇒(secx−tanx)(secx+tanx)=1 ⇒secx−tanx=t1
Here, I=∫(secx+tanx)9/2sec2dx
Put secx+tanx=t
⇒(secxtanx+sec2x)dx=dt ⇒secx.tdx=dt ⇒secxdx=tdt ∴secx−tanx=t1⇒secx=21(t+t1) ∴I=∫(secx+tanx)9/2secx.secxdx ⇒I=∫t9/221(t+t1).tdt=21∫(t9/21+t13/21)dt =−21{7t7/22+11t11/22}+K =−[7(secx+tanx)7/21+11(secx+tanx)11/21]+K =(secx+tanx)11/2−1{111+71(secx+tanx)2}+K