Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits (sec2x/(secx+tan x)9/2)dx equals to (for some arbitrary constant K)
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\int \limits \frac {sec^2x}{(secx+tan \, x)^{9/2}}dx $ equals to (for some arbitrary constant K)
AIEEE
AIEEE 2012
A
$\frac {-1}{(secx+tan \, x)^{11/2}} \bigg \{ \frac {1}{11}- \frac {1}{7}(secx+tan \, x)^2 \bigg \}+K$
B
$\frac {1}{(secx+tan \, x)^{11/2}} \bigg \{ \frac {1}{11}- \frac {1}{7}(secx+tan \, x)^2 \bigg \}+K$
C
$\frac {-1}{(secx+tan \, x)^{11/2}} \bigg \{ \frac {1}{11}+ \frac {1}{7}(secx+tan \, x)^2 \bigg \}+K$
D
$\frac {1}{(secx+tan \, x)^{11/2}} \bigg \{ \frac {1}{11}+ \frac {1}{7}(secx+tan \, x)^2 \bigg \}+K$
Solution:
PLAN Integration by Substitution
$ i.e. \, \, \, \, I= \int \limits f \{g(x) \}.. g^1(x)dx$
$ put \, \, \, \, g(x)=t \Rightarrow g^1(x)dx=dt$
$ \therefore \, \, \, \, I= \int \limits f(t)dt$
Description of Situation Generally, students gets
confused after substitution, i.e. secx+tanx=t.
Now, for secx, we should use
$ sec^2x-tan^2x=1$
$\Rightarrow \, \, \, \, \, \, (secx-tanx)(secx+tanx)=1$
$\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, secx-tanx= \frac {1}{t}$
Here, $ I= \int \limits \frac {sec^2dx}{(secx+tanx)^{9/2}}$
Put secx+tanx=t $\Rightarrow (secxtanx+sec^2x)dx=dt$
$\Rightarrow secx.tdx=dt$
$\Rightarrow secxdx=\frac {dt}{t}$
$\therefore secx-tanx= \frac {1}{t} \Rightarrow secx= \frac {1}{2} \bigg (t+ \frac {1}{t} \bigg )$
$\therefore I=\int \limits \frac {secx.secxdx}{(secx+tanx)^ {9/2}}$
$\Rightarrow I= \int \limits \frac {\frac {1}{2}\bigg (t+\frac {1}{t}\bigg ).\frac {dt}{t}}{t^{9/2}}= \frac {1}{2}\int \limits \bigg (\frac {1}{t^ {9/2}}+ \frac {1}{t^ {13/2}}\bigg ) dt$
$ =- \frac {1}{2} \bigg \{\frac {2}{7t^{7/2}}+ \frac {2}{11t ^{11/2}}\bigg \}+K$
$= -\bigg [ \frac {1}{7(secx+tanx)^{7/2}} + \frac {1}{11(secx+tanx)^{11/2}}\bigg ]+K$
$= \frac {-1}{(secx+tanx)^{11/2}}\bigg \{\frac {1}{11}+ \frac {1}{7}(secx+tan x)^2 \bigg \}+K$