Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits0 1x log(1+(x/2))dx=a+b log(2/3) , then
Q.
0
∫
1
x
lo
g
(
1
+
2
x
)
d
x
=
a
+
b
lo
g
3
2
, then
2504
182
Integrals
Report Error
A
a
=
2
3
,
b
=
2
3
20%
B
a
=
4
3
,
b
=
3
−
4
15%
C
a
=
4
3
,
b
=
2
3
45%
D
a = b
20%
Solution:
0
∫
1
x
l
o
g
(
1
+
2
x
)
d
x
=
∣
∣
l
o
g
(
1
+
2
x
)
⋅
2
x
2
∣
∣
0
1
−
∫
0
1
1
+
2
x
1
⋅
2
1
⋅
2
x
2
d
x
=
2
1
l
o
g
(
2
3
)
−
2
1
0
∫
1
x
+
2
x
2
d
x
=
2
1
l
o
g
(
2
3
)
−
2
1
0
∫
1
(
x
−
2
+
x
+
2
4
)
d
x
=
2
1
l
o
g
(
2
3
)
−
2
1
0
∫
1
(
x
−
2
+
x
+
2
4
)
d
x
=
2
1
l
o
g
(
2
3
)
−
2
1
[
2
x
2
−
2
x
+
4
l
o
g
(
x
+
2
)
]
0
1
=
2
1
l
o
g
(
2
3
)
−
2
1
[
2
1
−
2
+
4
l
o
g
3
−
4
l
o
g
2
]
=
2
1
l
o
g
3
−
2
1
l
o
g
2
−
4
1
+
1
−
2
l
o
g
3
+
2
l
o
g
2
=
2
3
l
o
g
2
−
2
3
l
o
g
3
+
4
3
=
2
3
l
o
g
(
3
2
)
+
4
3
∴
a
=
4
3
;
b
=
2
3
.