Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int \limits_{0} ^{1}x\,\log\left(1+\frac{x}{2}\right)dx=a+b\,\log\frac{2}{3}$ , then

Integrals

Solution:

$\int\limits_{0}^{1} x\,log\left(1+\frac{x}{2}\right)dx$
$=\left|log\left(1+\frac{x}{2}\right)\cdot\frac{x^{2}}{2}\right|_{0}^{1}-\int_{0}^{1} \frac{1}{1+\frac{x}{2}}\cdot\frac{1}{2}\cdot\frac{x^{2}}{2}dx$
$=\frac{1}{2}log\left(\frac{3}{2}\right)-\frac{1}{2} \int\limits_{0}^{1} \frac{x^{2}}{x+2} dx$
$=\frac{1}{2} log \left(\frac{3}{2}\right)-\frac{1}{2} \int\limits_{0}^{1}\left(x-2+\frac{4}{x+2}\right)dx$
$=\frac{1}{2}log \left(\frac{3}{2}\right)-\frac{1}{2} \int\limits_{0}^{1} \left(x-2+\frac{4}{x+2}\right)dx$
$=\frac{1}{2}log \left(\frac{3}{2}\right)-\frac{1}{2}\left[\frac{x^{2}}{2}-2x+4 log\left(x+2\right)\right]_{0}^{1}$
$=\frac{1}{2} log \left(\frac{3}{2}\right)-\frac{1}{2}\left[\frac{1}{2}-2+4\, log\,3-4\,log\,2\right]$
$=\frac{1}{2} log 3-\frac{1}{2} log\,2-\frac{1}{4}+1-2\, log\,3+2\, log\,2$
$=\frac{3}{2} log\,2-\frac{3}{2} log\, 3 + \frac{3}{4}=\frac{3}{2} log\left(\frac{2}{3}\right)+\frac{3}{4}$
$\therefore a=\frac{3}{4} ; b=\frac{3}{2}$.