Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ((ex+1) d x/e2 x+x2+2 x ex-p3-1) is equal to [Note: C is the constant of integration.]
Q.
∫
e
2
x
+
x
2
+
2
x
e
x
−
p
3
−
1
(
e
x
+
1
)
d
x
is equal to
[Note: C is the constant of integration.]
39
154
Integrals
Report Error
A
−
p
3
−
1
1
tan
−
1
(
−
p
3
−
1
e
x
+
x
)
+
C
for
p
<
−
1
B
2
−
p
3
−
1
1
ln
∣
∣
e
x
+
x
+
−
p
3
−
1
e
x
+
x
−
−
p
3
−
1
∣
∣
+
C
for
p
<
−
1
C
e
x
+
x
−
1
+
C
for
p
=
−
1
D
2
p
3
+
1
1
ln
∣
∣
e
x
+
x
+
p
3
+
1
e
x
+
x
−
p
3
+
1
∣
∣
+
C
for
p
>
−
1
Solution:
I
=
∫
(
e
x
+
x
)
2
−
p
3
−
1
(
e
x
+
1
)
d
x
put
e
x
+
x
=
t
⇒
(
e
x
+
1
)
d
x
=
d
t
I
=
∫
t
2
−
p
3
−
1
d
t
(A) & (B) for
p
<
−
1
(C) for
p
=
−
1
I
=
t
2
d
t
=
t
−
1
+
C
(D) for
p
>
−
1
I
=
∫
t
2
−
(
p
3
+
1
)
d
t
=
2
p
3
+
1
1
ln
∣
∣
t
+
p
3
+
1
t
−
p
3
+
1
∣
∣
+
C