Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \frac{\left(e^x+1\right) d x}{e^{2 x}+x^2+2 x e^x-p^3-1}$ is equal to
[Note: C is the constant of integration.]

Integrals

Solution:

$ I=\int \frac{\left(e^x+1\right) d x}{\left(e^x+x\right)^2-p^3-1}$
put $e ^{ x }+ x = t \Rightarrow\left( e ^{ x }+1\right) dx = dt$
$I=\int \frac{d t}{t^2-p^3-1}$
(A) & (B) for $p <-1$
image
(C) for $p =-1$
$I =\frac{ dt }{ t ^2}=\frac{-1}{ t }+ C$
(D) for $p >-1$
$I=\int \frac{d t}{t^2-\left(p^3+1\right)}=\frac{1}{2 \sqrt{p^3+1}} \ln \left|\frac{t-\sqrt{p^3+1}}{t+\sqrt{p^3+1}}\right|+C$