Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫( cot x cot (x+α)+1) d x=
Q.
∫
(
cot
x
cot
(
x
+
α
)
+
1
)
d
x
=
3096
211
TS EAMCET 2018
Report Error
A
cot
α
lo
g
(
∣
s
i
n
(
x
+
α
)
s
i
n
x
∣
)
+
c
B
lo
g
∣
sin
x
sin
(
x
+
α
)
∣
+
x
+
c
C
lo
g
∣
sin
x
cos
(
x
+
α
)
∣
+
x
+
c
D
tan
α
lo
g
(
∣
∣
s
i
n
(
x
+
α
)
c
o
s
x
∣
∣
)
+
c
Solution:
∫
[
cot
x
cot
(
x
+
a
)
+
1
]
d
x
=
∫
s
i
n
x
s
i
n
(
x
+
α
)
c
o
s
x
c
o
s
(
x
+
α
)
+
s
i
n
x
s
i
n
(
x
+
α
)
d
x
=
∫
s
i
n
x
s
i
n
(
x
+
α
)
c
o
s
α
d
x
=
s
i
n
α
c
o
s
α
∫
s
i
n
x
s
i
n
(
x
+
α
)
s
i
n
α
d
x
=
cos
α
∫
s
i
n
x
s
i
n
(
x
+
α
)
s
i
n
[(
x
+
α
)
−
x
]
d
x
=
cot
α
∫
s
i
n
x
s
i
n
(
x
+
α
)
s
i
n
(
x
+
α
)
c
o
s
x
−
c
o
s
(
x
+
α
)
s
i
n
x
d
x
=
cot
α
∫
(
cot
x
−
cot
(
x
+
α
))
d
x
=
cot
α
[
lo
g
∣
sin
x
∣
−
lo
g
sin
(
x
+
α
)
∣
]
+
c
=
cot
α
lo
g
∣
∣
s
i
n
(
x
+
α
)
s
i
n
x
∣
∣
+
c