Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int(\cot \,x \cot (x+\alpha)+1) d x=$

TS EAMCET 2018

Solution:

$\int[\cot x \cot (x+a)+1] d x$
$=\int \frac{\cos x \cos (x+\alpha)+\sin x \sin (x+\alpha)}{\sin x \sin (x+\alpha)} d x$
$=\int \frac{\cos \alpha}{\sin x \sin (x+\alpha)} d x=\frac{\cos \alpha}{\sin \alpha} \int \frac{\sin \alpha}{\sin x \sin (x+\alpha)} d x$
$=\cos \,\alpha \int \frac{\sin [(x+\alpha)-x]}{\sin x \sin (x+\alpha)} d x$
$=\cot \alpha \int \frac{\sin (x+\alpha) \cos x-\cos (x+\alpha) \sin x}{\sin x \sin (x+\alpha)} d x$
$=\cot \alpha \int(\cot x-\cot (x+\alpha)) d x$
$=\cot \alpha[\log |\sin x|-\log \sin (x+\alpha) \mid]+c$
$=\cot \alpha \log \left|\frac{\sin x}{\sin (x+\alpha)}\right|+c$