Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to

KEAMKEAM 2016Integrals

Solution:

Let $ I=\int\left(\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right) d x $
$=\int\left(\frac{\sin ^{2} x}{\sin x \cos x}+\frac{\cos ^{2} x}{\sin x \cos x} d x\right)$
$=\int(\tan x+\cot x) d x $
$= \log \sec x+(-\log \operatorname{cosec} x)+C $
$= \log \left|\frac{\sec x}{\operatorname{cosec} x}\right|+C=\log |\tan x|+C $