Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits010π | sin x| dx is:
Q.
0
∫
10
π
∣
sin
x
∣
d
x
is:
1948
208
Jharkhand CECE
Jharkhand CECE 2006
Report Error
A
20
B
8
C
10
D
18
Solution:
The period of
∣
sin
x
∣
is
n
.
0
∫
10
π
∣
sin
x
∣
d
x
=
[
0
∫
π
/2
sin
x
d
x
+
π
/2
∫
π
sin
x
d
x
]
=
10
[
−
cos
x
]
0
π
/2
+
[
−
cos
x
]
π
/2
π
Alternative Solution:
∴
Required area
=
10
0
∫
π
sin
x
d
x
=
10
[
−
cos
x
]
0
π
=
−
10
(
cos
π
−
cos
0
)
=
20