Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In triangle ABC, if 3a=b+c, then cot (B/2) cot (C/2) is equal to:
Q. In triangle ABC, if
3
a
=
b
+
c
,
then
cot
2
B
cot
2
C
is equal to:
2120
228
Bihar CECE
Bihar CECE 2005
Report Error
A
3
B
1
C
2
D
3
Solution:
∵
3
a
=
b
+
c
⇒
a
b
+
c
=
3
Applying sine rule, we get
s
i
n
A
s
i
n
B
+
s
i
n
C
=
3
⇒
2
s
i
n
2
A
c
o
s
2
A
2
s
i
n
2
B
+
C
c
o
s
2
B
−
C
=
3
⇒
c
o
s
(
2
B
+
C
)
c
o
s
2
A
c
o
s
2
A
c
o
s
2
B
−
C
=
3
⇒
cos
2
B
cos
2
C
+
sin
2
B
sin
2
C
=
3
[
cos
2
B
cos
2
C
−
sin
2
B
sin
2
C
]
⇒
2
cos
2
B
cos
2
C
=
4
sin
2
B
sin
2
C
⇒
cot
2
B
cot
2
C
=
2
Alternate Solution:
We have,
3
a
=
b
+
c
...(i)
Now,
cot
2
B
cot
2
C
⇒
(
s
−
a
)
(
s
−
c
)
s
(
s
−
b
)
.
(
s
−
a
)
(
s
−
b
)
s
(
s
−
c
)
=
s
−
a
s
=
2
a
+
b
+
c
−
a
2
a
+
b
+
c
=
−
a
+
b
+
c
a
+
b
+
c
=
−
a
+
3
a
a
+
3
a
[from (i)]
=
2
a
4
a
=
2