Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In triangle ABC, if $ 3a=b+c, $ then $ \cot \frac{B}{2}\cot \frac{C}{2} $ is equal to:

Bihar CECEBihar CECE 2005

Solution:

$ \because $ $ 3a=b+c $
$ \Rightarrow $ $ \frac{b+c}{a}=3 $
Applying sine rule, we get
$ \frac{\sin B+\sin C}{\sin A}=3 $
$ \Rightarrow $ $ \frac{2\sin \frac{B+C}{2}\cos \frac{B-C}{2}}{2\sin \frac{A}{2}\cos \frac{A}{2}}=3 $
$ \Rightarrow $ $ \frac{\cos \frac{A}{2}\cos \frac{B-C}{2}}{\cos \left( \frac{B+C}{2} \right)\cos \frac{A}{2}}=3 $
$ \Rightarrow $ $ \cos \frac{B}{2}\cos \frac{C}{2}+\sin \frac{B}{2}\sin \frac{C}{2}= $
$ 3\left[ \cos \frac{B}{2}\cos \frac{C}{2}-\sin \frac{B}{2}\sin \frac{C}{2} \right] $
$ \Rightarrow $ $ 2\cos \frac{B}{2}\cos \frac{C}{2}=4\sin \frac{B}{2}\sin \frac{C}{2} $
$ \Rightarrow $ $ \cot \frac{B}{2}\cot \frac{C}{2}=2 $
Alternate Solution:
We have, $ 3a=b+c $ ...(i)
Now, $ \cot \frac{B}{2}\cot \frac{C}{2} $
$ \Rightarrow $ $ \sqrt{\frac{s(s-b)}{(s-a)(s-c)}}.\sqrt{\frac{s(s-c)}{(s-a)(s-b)}} $
$ =\frac{s}{s-a}=\frac{\frac{a+b+c}{2}}{\frac{a+b+c}{2}-a} $
$ =\frac{a+b+c}{-a+b+c} $
$ =\frac{a+3a}{-a+3a} $ [from (i)]
$ =\frac{4a}{2a}=2 $