Q.
In the binomial expansion of (a−b)n,n≥5, the sum of 5th and 6th term is zero. Then, ba is equal to
3671
205
J & K CETJ & K CET 2012Binomial Theorem
Report Error
Solution:
Given expansion is (a−b)n. ∴T5=nC4(a)(n−4)(−b)4
and T6=nC5(a)(n−5)(−b)5
According to the given condition, T5+T6=0 ∴nC4(a)n−4(−b)4+nC5(a)n−5(−b)5=0 ⇒(an−4)(−b)4[nC4+nC5(a−b)]=0 ⇒ba=nC4nC5=4×3×2×1n(n−1)(n−2)(n−3)5×4×3×2×1n(n−1)(n−2)(n−3)(n−4) =5(n−4)