Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In the binomial expansion of (a-b)n, n ge 5, the sum of 5th and 6th term is zero. Then, (a/b) is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. In the binomial expansion of $ {{(a-b)}^{n}},\,\,n\,\,\ge \,5, $ the sum of $5^{th}$ and $6^{th}$ term is zero. Then, $ \frac{a}{b} $ is equal to
J & K CET
J & K CET 2012
Binomial Theorem
A
$ \frac{n-4}{2} $
0%
B
$ \frac{n-4}{3} $
100%
C
$ \frac{n-4}{5} $
0%
D
$ \frac{n-4}{4} $
0%
Solution:
Given expansion is $ {{(a-b)}^{n}}. $
$ \therefore $ $ {{T}_{5}}{{=}^{n}}{{C}_{4}}{{(a)}^{(n-4)}}{{(-b)}^{4}} $
and $ {{T}_{6}}{{=}^{n}}{{C}_{5}}{{(a)}^{(n-5)}}{{(-b)}^{5}} $
According to the given condition,
$ {{T}_{5}}+{{T}_{6}}=0 $
$ \therefore $ $ ^{n}{{C}_{4}}{{(a)}^{n-4}}{{(-b)}^{4}}{{+}^{n}}{{C}_{5}}{{(a)}^{n-5}}{{(-b)}^{5}}=0 $
$ \Rightarrow $ $ ({{a}^{n-4}}){{(-b)}^{4}}\left[ ^{n}{{C}_{4}}{{+}^{n}}{{C}_{5}}\left( \frac{-b}{a} \right) \right]=0 $
$ \Rightarrow $ $ \frac{a}{b}=\frac{^{n}{{C}_{5}}}{^{n}{{C}_{4}}}=\frac{\frac{n(n-1)\,(n-2)\,(n-3)\,(n-4)}{5\times 4\times 3\times 2\times 1}}{\frac{n(n-1)\,(n-2)\,(n-3)}{4\times 3\times 2\times 1}} $
$ =\frac{(n-4)}{5} $