Q.
In an isosceles trapezium, the length of one of the parallel sides, and the lengths of the non-parallel sides are all equal to 30. In order to maximise the area of the trapezium, the smallest angle should be
Given ABCD is trapezium AD=BC=CD=30
Let the smallest angle be θ. ∠DAB=θ
In ΔAMD, cosθ=30AM ⇒AM=30cosθ sinθ=30DM=DM=30sinθ
Area of trapezium =21(AB+CD)DM ⇒A=21(60+60cosθ)30sinθ ⇒A=900(sinθ+sinθcosθ) ⇒dθdA=900(cosθ−sin2θ+cos2θ)
For maximum or minimum, put dθdA=0 ∴cosθ−sin2θ+cos2θ=0 ⇒cosθ+cos2θ=0 ⇒2cos23θcos2θ=0 ⇒23θ=2π or 2θ=2π ⇒θ=3π or θ=π
For maximum θ=3π