Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In an isosceles trapezium, the length of one of the parallel sides, and the lengths of the non-parallel sides are all equal to $30$. In order to maximise the area of the trapezium, the smallest angle should be

KVPYKVPY 2017

Solution:

Given $ABCD$ is trapezium
$AD = B C = CD = 30$
Let the smallest angle be $\theta$.
image
$\angle DAB = \theta$
In $\Delta AMD$,
$\cos\,\theta = \frac{AM}{30 }$
$\Rightarrow AM = 30\,\cos\,\theta$
$\sin \,\theta = \frac{DM}{30} = DM = 30\,\sin \,\theta$
Area of trapezium $= \frac{1}{2} (AB + CD) DM$
$\Rightarrow A = \frac{1}{2} (60 + 60\,\cos\,\theta ) 30 \,\sin\,\theta$
$\Rightarrow A = 900 (\sin \,\theta + \sin\,\theta \,\cos\,\theta)$
$\Rightarrow \frac{dA}{d\theta} = 900 (\cos\,\theta - \sin^2 \,\theta + \cos^2\,\theta)$
For maximum or minimum, put $\frac{dA}{d\theta} = 0$
$\therefore \cos\,\theta - \sin^2 \theta + \cos^2 \theta = 0$
$\Rightarrow \cos\,\theta + \cos\,2\theta = 0$
$\Rightarrow 2\,\cos \frac{3\theta}{2} \cos \frac{\theta}{2} = 0$
$\Rightarrow \frac{3\theta}{2} = \frac{\pi}{2}$ or $\frac{\theta}{2} = \frac{\pi}{2}$
$\Rightarrow \theta = \frac{\pi}{3}$ or $\theta = \pi$
For maximum $\theta = \frac{\pi}{3}$