Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a triangle ABC, the altitude AD and the median AE divide angle A into three equal parts. If BC =28, then the nearest integer to AB + AC is
Q. In a triangle
A
BC
, the altitude
A
D
and the median
A
E
divide
∠
A
into three equal parts. If
BC
=
28
, then the nearest integer to
A
B
+
A
C
is
2170
209
KVPY
KVPY 2020
Report Error
A
38
B
37
C
36
D
33
Solution:
Δ
A
BE
is isosceles
⇒
B
D
=
D
E
=
7
Δ
A
D
C
:
tan
(
90
−
2
θ
)
=
21
A
D
..... (1)
Δ
A
D
E
:
tan
(
90
−
θ
)
=
7
A
B
.....(2)
Divide
t
a
n
2
θ
t
a
n
θ
=
3
1
⇒
2
1
−
t
a
n
2
θ
=
3
1
1
−
tan
2
θ
=
3
2
⇒
tan
θ
=
3
1
⇒
θ
=
3
0
∘
Δ
A
B
D
:
cos
(
90
−
θ
)
=
C
B
D
=
sin
θ
C
=
7
cosec
θ
=
14
Δ
A
D
C
:
cos
(
90
−
2
θ
)
=
b
D
C
=
sin
2
θ
b
=
21
cosec
2
θ
=
21
cosec
3
π
b
=
3
42
=
14
3
b
+
c
=
14
3
+
14
[
b
+
c
]
=
38