Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a triangle ABC, the altitude AD and the median AE divide angle A into three equal parts. If BC =28, then the nearest integer to AB + AC is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. In a triangle $ABC$, the altitude $AD$ and the median $AE$ divide $\angle A$ into three equal parts. If $BC =28$, then the nearest integer to $AB + AC$ is
KVPY
KVPY 2020
A
38
B
37
C
36
D
33
Solution:
$\Delta ABE$ is isosceles $\Rightarrow BD = DE =7$
$\Delta ADC : \tan (90-2 \theta)=\frac{ AD }{21}$ ..... (1)
$\Delta ADE : \tan (90-\theta)=\frac{ AB }{7}$ .....(2)
Divide $\frac{\tan \theta}{\tan 2 \theta}=\frac{1}{3} $
$\Rightarrow \frac{1-\tan ^{2} \theta}{2}=\frac{1}{3}$
$1-\tan 2 \theta=\frac{2}{3} $
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}} $
$\Rightarrow \theta=30^{\circ}$
$\Delta ABD : \cos (90-\theta)=\frac{ BD }{ C }=\sin \theta$
$C =7 \operatorname{cosec} \theta=14$
$\Delta ADC : \cos (90-2 \theta)=\frac{ DC }{ b }=\sin 2 \theta$
$b =21 \operatorname{cosec} 2 \theta=21 \operatorname{cosec} \frac{\pi}{3}$
$b =\frac{42}{\sqrt{3}}=14 \sqrt{3}$
$b+c=14 \sqrt{3}+14 $
${[b+c]=38}$