Q.
If zn=an+ibn(n=1,2,3,……..,11) are the roots of the equation z11+2z10+3z9+4z8+5z7+6z6+5z5+4z4+3z3+2z2+z=0 then find the value of n=1∑11∣an∣.
174
98
Complex Numbers and Quadratic Equations
Report Error
Answer: 6
Solution:
z11+2z10+3z9+………..+2z2+z=0 ⇒z(z10+2z9+3z8+………..+2z+1)=0 ⇒z(1+z+z2+z3+z4+z5)2=0 ⇒z(1−z1−z6)2=0(z=1) ⇒z(1−z6)2=0 ∴z=0 and every root of the equation z6−1=0(exceptz=1) two times repeated are the 11 roots of the given equation. z=(1)61=cos62mπ+isin62mπ,m=1,2,3,4,5 ∴n=1∑11∣an∣=0+2(m=1∑5∣∣cos3mπ∣∣) =2(∣∣cos3π∣∣+∣∣cos32π∣∣+∣cosπ∣+∣∣cos34π∣∣+∣∣cos35π∣∣) =2(21+21+1+21+21)=6