Q. If $z _{ n }= a _{ n }+ ib _{ n }( n =1,2,3, \ldots \ldots . ., 11)$ are the roots of the equation $z^{11}+2 z^{10}+3 z^9+4 z^8+5 z^7+6 z^6+5 z^5+4 z^4+3 z^3+2 z^2+z=0$ then find the value of $\displaystyle\sum_{n=1}^{11}\left|a_n\right|$.
Complex Numbers and Quadratic Equations
Solution: