For a complex number Z=eiθ it is given that 3sin3θ+2sin2θ+5sin5θ3cos3θ+2cos2θ+5cos5θ=ir=0∑10brZrr=0∑10arZr ⇒r=0∑10arzr−r=0∑10brzrr=0∑10arzr+r=0∑10brzr=3e−i3θ+2e−i2θ+5e−i5θ3ei3θ+2ei2θ+5ei5θ ⇒r=0∑10zr(ar−br)r=0∑10zr(ar+br)=3e−i3θ+2e−i2θ+5e−i5θ3ei3θ+2ei2θ+5ei5θ ⇒a0+b0=a1+b1=a4+b4=a6+b6 =a7+b7=a8+b8 =a9+b9=a10+b10=0
and a2+b2=2,a3+b3=3,a5+b5=5 ∴10r=0∑10(ar+br)=102+3+5=1