Q.
If
$z=e^{i \theta}$ and $\frac{3 \cos 3 \theta+2 \cos 2 \theta+5 \cos 5 \theta}{3 \sin 3 \theta+2 \sin 2 \theta+5 \sin 5 \theta}=\frac{i \displaystyle\sum_{r=0}^{10} a_{r} z^{r}}{\displaystyle\sum_{r=0}^{10} b_{r} z^{r}}$ then
$\frac{\left(\displaystyle\sum_{r=0}^{10} a_{r}+\displaystyle\sum_{r=0}^{10} b_{r}\right)}{10}=$
TS EAMCET 2020
Solution: