Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z1,z2,......,zn are complex numbers such that |z1|=|z2=.....=|zn|=1, then |z1+z2+...+zn| is equal to
Q. If
z
1
,
z
2
,
......
,
z
n
are complex numbers such that
∣
z
1
∣
=
∣
z
2
=
.....
=
∣
z
n
∣
=
1
,
then
∣
z
1
+
z
2
+
...
+
z
n
∣
is equal to
3007
229
KEAM
KEAM 2010
Report Error
A
∣
z
1
z
2
z
3
.....
z
n
∣
B
∣
z
1
∣
+
∣
z
2
∣
+
....
+
∣
z
n
∣
C
∣
∣
z
1
1
+
z
2
1
+
....
+
z
n
1
∣
∣
D
n
E
n
Solution:
We have,
∣
z
1
∣
=
∣
z
2
∣
=
....
=
∣
z
n
∣
=
1
⇒
z
1
z
1
=
z
2
z
2
=
.....
z
n
z
n
=
1
⇒
z
1
=
z
1
1
,
z
2
=
z
2
1
,
....
z
n
=
z
n
1
Now,
∣
z
1
+
z
2
+
....
+
z
n
∣
=
∣
z
1
+
z
2
+
....
+
z
n
∣
=
∣
z
1
+
z
2
+
....
+
z
n
∣
=
∣
∣
z
1
1
+
z
2
1
+
....
+
z
n
1
∣
∣