Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ {{z}_{1}},{{z}_{2}},......,{{z}_{n}} $ are complex numbers such that $ |{{z}_{1}}|=|{{z}_{2}}=.....=|{{z}_{n}}|=1, $ then $ |{{z}_{1}}+{{z}_{2}}+...+{{z}_{n}}| $ is equal to

KEAMKEAM 2010

Solution:

We have, $ |{{z}_{1}}|=|{{z}_{2}}|=....=|{{z}_{n}}|=1 $
$ \Rightarrow $ $ {{z}_{1}}\overline{{{z}_{1}}}={{z}_{2}}\overline{{{z}_{2}}}=.....{{z}_{n}}\overline{{{z}_{n}}}=1 $
$ \Rightarrow $ $ \overline{{{z}_{1}}}=\frac{1}{{{z}_{1}}},\overline{{{z}_{2}}}=\frac{1}{{{z}_{2}}},....\overline{{{z}_{n}}}=\frac{1}{{{z}_{n}}} $
Now, $ |{{z}_{1}}+{{z}_{2}}+....+{{z}_{n}}| $
$=|\overline{{{z}_{1}}+{{z}_{2}}+....+{{z}_{n}}}| $
$=|\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+....+\overline{{{z}_{n}}}|=\left| \frac{1}{{{z}_{1}}}+\frac{1}{{{z}_{2}}}+....+\frac{1}{{{z}_{n}}} \right| $