Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z1, z2 and z3 are the vertices of a triangle in the argand plane such that |z1 - z2|=|z1 - z3|, then |arg ((2 z1 - z2 - z3/z3 - z2))| is
Q. If
z
1
,
z
2
and
z
3
are the vertices of a triangle in the argand plane such that
∣
z
1
−
z
2
∣
=
∣
z
1
−
z
3
∣
,
then
∣
∣
a
r
g
(
z
3
−
z
2
2
z
1
−
z
2
−
z
3
)
∣
∣
is
3387
215
NTA Abhyas
NTA Abhyas 2020
Complex Numbers and Quadratic Equations
Report Error
A
3
π
B
0
C
2
π
D
6
π
Solution:
z
3
−
z
2
z
1
−
z
2
=
∣
z
3
−
z
2
∣
∣
z
1
−
z
2
∣
e
i
θ
z
2
−
z
3
z
1
−
z
2
=
∣
z
2
−
z
3
∣
∣
z
1
−
z
3
∣
e
−
i
θ
⇒
(
z
3
−
z
2
z
1
−
z
2
+
z
3
−
z
2
z
1
−
z
3
)
=
purely imaginary number
a
r
g
(
z
3
−
z
2
2
z
1
−
z
2
−
z
3
)
=
±
2
π