Q.
If z1 and z2 are two distinct complex numbers satisfying the relation ∣∣z12−z22∣∣=∣∣zˉ12+zˉ22−2zˉ1zˉ2∣∣ and (argz1−argz2)=baπ, then the least possible value of ∣a−b∣ is equal to (where, a&b are integers)
∣∣z12−z22∣∣=∣∣zˉ12+zˉ22−2zˉ1zˉ2∣∣ ∣∣z12−z22∣∣=∣∣z12+z22−2z1z2∣∣ ∣z1+z2∣∣z1−z2∣=∣z1−z2∣∣z1−z2∣ ⇒∣z1+z2∣=∣z1−z2∣ z1ˉ⊥z2ˉ ⇒arg(z2z1)=2nπ±2π
i.e. −2π,2π,23π,……..
The minimum value of ∣a−b∣=1 (when a=1&b=2 )