Q. If $z_{1}$ and $z_{2}$ are two distinct complex numbers satisfying the relation $\left|z_{1}^{2}-z_{2}^{2}\right|=\left|\bar{z}_{1}^{2}+\bar{z}_{2}^{2}-2 \bar{z}_{1} \bar{z}_{2}\right|$ and $\left(\arg z_{1}-\arg z_{2}\right)=\frac{a \pi}{b}$, then the least possible value of $|a-b|$ is equal to (where, $a \& b$ are integers)
NTA AbhyasNTA Abhyas 2022
Solution: