Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If | ((z1-2z2)/(2-z1 overlinez2)) |=1 and |z2|≠ 1, where z1 and z2 are complex numbers, then the value of |z1| is
Q. If
∣
∣
(
2
−
z
1
z
2
)
(
z
1
−
2
z
2
)
∣
∣
=
1
and
∣
z
2
∣
=
1
,
where
z
1
and
z
2
are complex numbers, then the value of
∣
z
1
∣
is
1788
173
Rajasthan PET
Rajasthan PET 2005
Report Error
A
1
B
−
1
C
2
D
−
2
Solution:
Given,
∣
∣
(
2
−
z
1
z
2
)
(
z
1
−
2
z
2
)
∣
∣
=
1
,
∣
z
2
∣
=
1
⇒
∣
z
1
−
2
z
2
∣
2
=
∣2
−
z
1
z
∣
2
⇒
(
z
1
−
2
z
2
)
(
z
1
−
2
z
2
)
=
(
2
−
z
1
z
2
)
(
2
−
z
1
z
2
)
⇒
(
z
1
−
2
z
2
)
(
z
1
−
2
z
2
)
=
(
2
−
z
1
z
2
)
(
2
−
z
1
z
2
)
⇒
z
1
z
1
−
2
z
1
z
2
−
2
z
1
z
2
+
4
z
2
z
2
=
4
−
2
z
1
z
2
−
2
z
1
z
2
+
z
1
z
1
z
2
z
2
⇒
∣
z
1
∣
2
+
4∣
z
2
∣
2
=
4
+
∣
z
1
∣
2
∣
z
2
∣
2
⇒
∣
z
1
∣
2
+
4∣
z
2
∣
2
−
4
−
∣
z
1
∣
2
∣
z
2
∣
2
=
0
⇒
∣
z
1
∣
2
(
1
−
∣
z
2
∣
2
)
−
4
(
1
−
∣
z
2
∣
2
)
=
0
⇒
(
1
−
∣
z
2
∣
2
)
(
∣
z
2
∣
2
−
4
)
=
0
⇒
1
−
∣
z
2
∣
2
=
0∣
z
1
∣
2
−
4
=
0
⇒
∣
z
2
∣
=
1
,
∣
z
1
∣
=
2