Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \left| \frac{({{z}_{1}}-2{{z}_{2}})}{(2-{{z}_{1}}{{\overline{z}}_{2}})} \right|=1 $ and $ |{{z}_{2}}|\ne 1, $ where $ {{z}_{1}} $ and $ {{z}_{2}} $ are complex numbers, then the value of $ |{{z}_{1}}| $ is

Rajasthan PETRajasthan PET 2005

Solution:

Given, $ \left| \frac{({{z}_{1}}-2{{z}_{2}})}{(2-{{z}_{1}}{{\overline{z}}_{2}})} \right|=1,|{{z}_{2}}|\ne 1 $
$ \Rightarrow $ $ |{{z}_{1}}-2{{z}_{2}}{{|}^{2}}=|2-{{z}_{1}}\overline{z}{{|}^{2}} $
$ \Rightarrow $ $ ({{z}_{1}}-2{{z}_{2}})(\overline{{{z}_{1}}-2{{z}_{2}}})=(2-{{z}_{1}}{{\overline{z}}_{2}})(\overline{2-{{z}_{1}}{{\overline{z}}_{2}}}) $
$ \Rightarrow $ $ ({{z}_{1}}-2{{z}_{2}})({{\overline{z}}_{1}}-2{{\overline{z}}_{2}})=(2-{{z}_{1}}{{\overline{z}}_{2}})(2-{{z}_{1}}{{\overline{z}}_{2}}) $
$ \Rightarrow $ $ {{z}_{1}}{{\overline{z}}_{1}}-2{{z}_{1}}{{\overline{z}}_{2}}-2{{\overline{z}}_{1}}{{z}_{2}}+4{{z}_{2}}{{\overline{z}}_{2}} $ $ =4-2{{\overline{z}}_{1}}{{z}_{2}}-2{{z}_{1}}{{\overline{z}}_{2}}+{{z}_{1}}{{\overline{z}}_{1}}{{z}_{2}}{{\overline{z}}_{2}} $
$ \Rightarrow $ $ |{{z}_{1}}{{|}^{2}}+4|{{z}_{2}}{{|}^{2}}=4+|{{z}_{1}}{{|}^{2}}|{{z}_{2}}{{|}^{2}} $
$ \Rightarrow $ $ |{{z}_{1}}{{|}^{2}}+4|{{z}_{2}}{{|}^{2}}-4-|{{z}_{1}}{{|}^{2}}|{{z}_{2}}{{|}^{2}}=0 $
$ \Rightarrow $ $ |{{z}_{1}}{{|}^{2}}(1-|{{z}_{2}}{{|}^{2}})-4(1-|{{z}_{2}}{{|}^{2}})=0 $
$ \Rightarrow $ $ (1-|{{z}_{2}}{{|}^{2}})(|{{z}_{2}}{{|}^{2}}-4)=0 $
$ \Rightarrow $ $ 1-|{{z}_{2}}{{|}^{2}}=0|{{z}_{1}}{{|}^{2}}-4=0 $
$ \Rightarrow $ $ |{{z}_{2}}|\ne 1,|{{z}_{1}}|=2 $