We have, z1=2−3i,z2=−1+i
and arg(z−z2z−z1)=2π ∴∣z−z1∣2+∣z2−z2∣2=∣z1−z2∣2 ⇒∣z−(2−3i)∣2+∣z−(−1+i)∣2=∣2−3i+1−i∣2 ⇒(x−2)2+(y+3)2+(x+1)2+(y−1)2=9+16 [∵z=x+iy] ⇒x2−4x+4+y2+6y+9+x2+2x+1+y2 −2y+1=25 ⇒2x2+2y2−2x+4y−10=0 ⇒x2+y2−x+2y−5=0
Now equation of line paring through z1(2,−3) and z2(−1,1) is y+3=−1−21+3(x−2) ⇒y+3=−34(x−2) ⇒−3y−a=4x−8 ⇒−3y−9=4x−8 ⇒4x+3y+1=0
According to given condition, z should not lies on z1 and z2 ∴4x+3y+1>0